Kamis, 19 Desember 2019

PEMBELAJARAN MATEMATIKA SD

Pembelajaran matematika di SD merupakan salah satu kajian yang selalu menarik untuk dikemukakan karena adanya perbedaan karakteristik khususnya antara hakikat anak dan hakikat matematika. Untuk itu diperlukan adanya jembatan yang dapat menetralisir perbedaan atau pertentangan tersebut. Anak usia SD sedang mengalami perkembangan pada tingkat berpikirnya. Ini karena tahap berpikir mereka masih belum formal, malahan para siswa SD di kelas-kelas rendah bukan tidak mungkin sebagian dari mereka berpikirnya masih berada pada tahapan (pra konkret).
Di lain pihak, matematika adalah- ilmu deduktif, aksiomatik, formal, hierarkis, abstrak, bahasa simbol yang padat anti dan semacamnya sehingga para ahli matematika dapat mengembangkan sebuah sistem matematika. Mengingat adanya perbedaan karakteristik itu maka diperlukan kemampuan khusus dari seorang guru untuk menjembatani antara dunia anak yang belum berpikir secara deduktif agar dapat mengerti dunia matematika yang bersifat deduktif.


Dari dunia matematika yang merupakan sebuah sistem deduktif telah mampu mengembangkan model-model yang merupakan contoh dari sistem ini. Model-model matematika sebagai interpretasi dari sistem matematika ini kemudian dapat digunakan untuk mengatasi persoalan-persoalan dunia nyata. Manfaat lain yang menonjol dari matematika dapat membentuk pola pikir orang yang mempelajarinya menjadi pola pikir matematis yang sistematis, logis, kritis dengan penuh kecermatan. Namun sayangnya, pengembangan sistem atau model matematika itu tidak selalu sejalan dengan perkembangan berpikir anak terutama pada anak-anak usia SD. Apa yang dianggap logis dan jelas oleh para ahli dan apa yang dapat diterima oleh orang yang berhasil mempelajarinya, merupakan hal yang tidak masuk akal dan membingungkan bagi anak-anak. Hal ini pulalah yang menyebabkan pembelajaran matematika di SD selalu menarik untuk dibicarakan.
Selain tahap perkembangan berpikir anak-anak usia SD belum formal dan relatif masih konkret ditambah lagi keanekaragaman intelegensinya, serta jumlah populasi siswa SD yang besar dan ditambah lagi dengan wajib belajar 9 tahun maka faktor-faktor ini harus diperhatikan agar proses pembelajaran matematika di SD dapat berhasil.
Matematika bagi siswa SD berguna untuk kepentingan hidup pada lingkungannya, untuk mengembangkan pola pikirnya, dan untuk mempelajari ilmu-ilmu yang kemudian. Kegunaan atau manfaat matematika bagi para siswa SD adalah sesuatu yang jelas dan tidak perlu dipersoalkan lagi, lebih- lebih pada era pengembangan ilmu pengetahuan dan teknologi dewasa ini. Persoalannya sekarang adalah materi-materi mana yang diperlukan untuk anak-anak SD di kita, dan bagaimana cara-cara pembelajarannya?
Khusus pada kesempatan ini yang akan dibicarakan yaitu materi-materi seperti yang tercantum dalam kurikulum matematika SD yang berlaku. Namun, tidak ada salahnya kita mengantisipasi dengan materi-materi yang kemungkinan berkembang di kemudian hari sebagai akibat dari tuntutan iptek. Jadi, yang menjadi bahasan kita sekarang ini adalah masalah pembelajarannya, yaitu pembelajaran matematika di SD.

1.   Anak sebagai Individu yang Berkembang

Sebagaimana kita ketahui bahwa perkembangan anak itu berbeda dengan orang dewasa. Hal ini tampak jelas baik pada bentuk fisiknya maupun dalam cara-cara berpikir, bertindak, tanggung jawab, kebiasaan kerja, dan sebagainya. Namun demikian masih banyak pendidik atau orang tua atau orang dewasa lainnya yang beranggapan bahwa anak atau siswa itu dapat berpikir seperti kita sebagai orang dewasa. Guru yang sedang membicarakan suatu konsep matematika sering beranggapan bahwa siswanya dapat mengikuti dan melaksanakan jalan pikirannya untuk memahami konsep- konsep matematika tersebut sebagaimana dirinya. Sesuatu yang mudah menurut logika berpikir kita sebagai guru belum tentu dianggap mudah oleh logika berpikir anak, malahan mungkin anak menganggap itu adalah sesuatu yang sulit untuk dimengerti.
Penelitian yang telah dilakukan oleh Jean Peaget dan teman-temannya menunjukkan bahwa anak tidak bertindak dan berpikir sama seperti orang dewasa. Lebih-lebih pada pembelajaran matematika di SD, sesuatu yang abstrak dapat saja dipandang sederhana menurut kita yang sudah formal, namun dapat saja menjadi sesuatu yang sulit dimengerti oleh anak yang belum formal. Oleh karena itulah, tugas utama sekolah ialah menolong anak mengembangkan kemampuan intelektualnya sesuai dengan perkembangan intelektual anak.
Selain karakteristik kemampuan berpikir anak pada setiap tahapan perkembangannya berbeda, kita perlu pula menyadari bahwa setiap anak merupakan individu yang relatif berbeda pula. Setiap individu anak akan berbeda dalam hal minat, bakat, kemampuan, kepribadian, dan pengalaman lingkungannya. Guru sebagai petugas profesional, sebagai seorang pendidik yang melakukan usaha untuk melaksanakan pendidikan terhadap sekelompok anak, tentunya harus memperhatikan dengan sungguh-sungguh keadaan dasar anak didik tersebut.
Berbagai strategi pembelajaran dari teori-teori pembelajaran matematika yang akan digunakan haruslah disesuaikan dengan kondisi-kondisi tersebut di atas. Kesesuaian ini akan memungkinkan keefektifan dan keefisienan dari usaha-usaha kita dalam pembelajaran matematika khususya di SD.

2.   Kesiapan Intelektual Anak

Para ahli jiwa seperti Peaget, Bruner, Brownell, Dienes percaya bahwa jika kita akan memberikan pelajaran tentang sesuatu ke pada anak didik maka kita harus memperhatikan tingkat perkembangan berpikir anak tersebut.
Jean Peaget dengan teori belajar yang disebut Teori Perkembangan Mental Anak (mental atau intelektual atau kognitif) atau ada pula yang menyebutnya Teori Tingkat Perkembangan Berpikir Anak telah membagi tahapan kemampuan berpikir anak menjadi empat tahapan, yaitu tahap sensori motorik (dari lahir sampai usia 2 tahun), tahap operasional awal/pra operasi (usia 2 sampai 7 tahun), tahap operasional/operasi konkret (usia 7 sampai 11 atau 12 tahun) dan tahap operasional formal/operasi formal (usia 11 tahun ke atas).
Penelitian Peaget ini dilakukan di dunia Barat dengan sebaran umur setiap tahap rata-rata atau di sekitarnya sehingga tidak menutup kemungkinan ada perbedaan dengan masyarakat kita dan antara anak yang satu dengan yang lainnya. Kita dapat menggunakannya sebagai patokan atau perkiraan, atau berasumsi bahwa umur kesiapan dari setiap tahapan berlaku juga bagi anak-anak kita.
Anak usia SD pada umumnya berada pada tahap berpikir operasional konkret namun tidak menutup kemungkinan mereka masih berada pada tahap pre-operasi. Sedangkan pada setiap tahapan ada ciri-cirinya sesuai umur kesiapannya. Misalnya, bila anak berada pada tahap pre-operasi maka mereka belum memahami hukum-hukum kekekalan sehingga bila diajarkan konsep penjumlahan besar kemungkinan mereka tidak akan mengerti. Siswa yang berada pada tahap operasi konkret memahami hukum kekekalan, tetapi ia belum bisa berpikir secara deduktif sehingga pembuktian dalil-dalil matematika tidak akan dimengerti oleh mereka. Hanya anak-anak yang berada pada tahapan operasi formal yang bisa berpikir secara deduktif. Sedangkan khusus untuk tahapan sensori motor kita abaikan saja sebab tidak ada kaitan langsung dengan pembelajaran matematika di sekolah.
Jadi, pada dasarnya agar pelajaran matematika di SD itu dapat dimengerti oleh para siswa dengan baik maka seyogianya mengajarkan sesuatu bahasan itu harus diberikan kepada siswa yang sudah siap untuk dapat menerimanya. Karena itulah sekarang kita akan melihat untuk bisa mengetahui tahapan perkembangan intelektual atau berpikir siswa di SD dalam pembelajaran matematika.

a.   Kekekalan bilangan (banyak)
Bila anak telah memahami kekekalan bilangan maka ia akan mengerti bahwa banyaknya benda-benda itu akan tetap walaupun letaknya berbeda- beda. Misalnya mereka akan berpendapat bahwa banyaknya pensil yang disimpan secara berdekatan dengan yang lebih renggang dan dijajarkan sama (perhatikan Gambar 1.1 a dan Gambar 1.1b). Tetapi bila siswa menyatakan bahwa banyak pensil tersebut tidak sama karena susunan atau cara menyimpannya berbeda sehingga kelihatannya berbeda maka ia belum dapat memahami hukum kekekalan banyak (bilangan). Jadi, ia belum waktunya mendapatkan pelajaran konsep penjumlahan atau operasi-operasi hitung lainnya. Konsep kekekalan bilangan umumnya dicapai oleh siswa usia sekitar 6 sampai 7 tahun.
b.   Kekekalan materi (zat)
Anak belum memahami hukum kekekalan materi atau zat akan berpendapat bahwa banyaknya air pada ke-2 bejana (gelas) di sebelah kanan adalah berbeda banyaknya (zat) walaupun ditumpahkan dari 2 bejana yang isinya sama. Pada keadaan seperti ini anak baru bisa memahami yang sama atau berbeda itu dan satu sudut pandangan yang tampak olehnya (perhatikan Gambar 1.2a dan Gambar 1.2b). Belum bisa melihat perbedaan atau persamaan dari dua karakteristik atau lebih. Siswa seperti ini akan dapat membedakan bilangan ganjil dengan bilangan genap, tetapi akan memperoleh kesukaran ketika menentukan bilangan genap yang prima, atau tiga buah bilangan ganjil positif yang habis di bagi tiga. Umumnya hukum kekekalan materi ini baru dapat dicapai oleh siswa usia sekitar 7 - 8 tahun.
             
c.   Kekekalan panjang
Anak yang belum memahami kekekalan panjang akan mengatakan bahwa dua utas tali (kawat) yang tadinya sama panjangnya menjadi tidak sama panjang, bila yang satu dikerutkan dan yang satunya lagi tidak. Ia cenderung berpendapat bahwa tali atau kawat yang tidak dikerutkan akan lebih panjang. Anak yang berpendapat demikian akan memperoleh kesukaran dalam mempelajari konsep pengukuran, terutama pengukuran panjang benda- benda yang tidak lurus. Siswa usia sekitar 8 - 9 tahun baru dapat memahami hukum kekekalan tersebut (lihat Gambar 1.3a dan Gambar 1.3b).
         
   
d.   Kekekalan luas
Anak Yang belum memahami kekekalan luas cenderung untuk berpendapat bahwa luas daerah yang ditutupi oleh benda-benda di sebelah kanan lebih luas, padahal keduanya sama luasnya, hanya cara menyimpannya saja berbeda sehingga kelihatannya berbeda. Pada tahapan ini siswa belum memahami bahwa luas daerah persegipanjang PQRS adalah sama dengan luas daerah persegipanjang ABCD dan luas daerah segitiga ABD adalah setengah luas daerah jajarangenjang ABCD. Seperti halnya kita ketahui bahwa siswa usia sekitar 8 - 9 tahun baru dapat memahami hukum kekekalan luas (perhatikan Gambar 1.4a, 1.4b, 1.5a, dan 1.5b).



e.   Kekekalan berat
Anak yang sudah memahami hukum kekekalan berat ia mengerti bahwa berat benda itu tetap walaupun bentuknya, tempatnya, dan atau alat penimbangannya berbeda-beda. Umumnya  siswa  pertengahan  SD  sekitar  9 - 10 tahun sudah memahami hukum kekekalan berat (Gambar l.6a dan Gambar 1.6b).

f.    Kekekalan isi
Usia sekitar 14 - 15 tahun atau kadang-kadang sekitar 11- 14 tahun anak sudah memiliki hukum kekekalan isi. Misalnya ia sudah mengerti bahwa air yang ditumpahkan dari sebuah bak atau gelas yang penuh adalah sama dengan isi sebuah benda yang ditenggelamkannya (Gambar 1.7a dan Gambar 1.7b).

g.    Tingkat pemahaman
Tingkat pemahaman usia SD sekalipun di kelas-kelas akhir mereka tetap terbatas. Mereka akan mengalami kesulitan merumuskan definisi dengan kata-katanya sendiri. Mereka belum bisa membuktikan dalil secara baik. Apabila mereka bisa menyebutkan definisi atau dapat membuktikan dalil secara benar maka besar kemungkinan karena hapalan bukan pengertian. Mereka masih kesulitan berpikir secara induktif apalagi secara deduktif, umumnya mereka berpikir secara transitif (dari khusus ke khusus dan belum mampu membuat kesimpulan). Mereka baru bisa menyatakan bahwa 2 + 0 =
2. 4 + 2 = 6; 6 + 4 = 10, 8 + 4 = 12 (secara transitif), tetapi mereka belum mampu menyimpulkan secara induktif bahwa jumlah dua bilangan genap adalah genap, apalagi membuktikan secara umum bahwa jumlah dua bilangan genap adalah genap (deduktif).
Dari uraian di atas jelas bahwa anak itu bukanlah tiruan dari orang dewasa. Anak bukan bentuk mikro dari orang dewasa. Anak-anak mempunyai kemampuan intelektual yang sangat berbeda dengan orang dewasa. Cara-cara berpikir anak berbeda dengan cara-cara berpikir orang dewasa.
Melihat secara singkat dari teori belajar Peaget ini tentunya kita dapat mengambil manfaatnya dalam pembelajaran matematika di SD yaitu, terutama tentang kesiapan untuk belajar dan bagaimana berpikir mereka itu berubah sesuai dengan perkembangan usianya. Hal ini berarti bahwa strategi pembelajaran matematika yang kita gunakan haruslah sesuai dengan perkembangan intelektual atau perkembangan tingkat berpikir anak sehingga diharapkan pembelajaran matematika di SD itu lebih efektif dan lebih hidup.




0 komentar:

Posting Komentar